
Incremunica: Web-based Incremental View
Maintenance for SPARQL

Maarten Vandenbrande1[0009−0003−6470−9123], Ruben Taelman1[0000−0001−5118−256𝑋],
Pieter Bonte2[0000−0002−8931−8343], and Femke Ongenae1[0000−0003−2529−5477]

1 IDLab, Ghent University – imec, Ghent, Belgium, firstname.lastname@ugent.be
2 Department of Computer Science, KU Leuven Campus Kulak, Belgium,

pieter.bonte@kuleuven.be

Abstract. The dynamic nature of Linked Data from IoT devices, social media,
and the financial sector requires efficient mechanisms to keep SPARQL query re-
sults up to date, as traditional reevaluation methods are computationally expensive
and impractical. Incremental view maintenance (IVM) offers a more efficient al-
ternative by updating query results incrementally. However, existing engines lack
support for federated querying, dynamically adding and removing sources during
query execution, SPARQL Query Language support, multiple IVM techniques,
and client-side execution. In this paper, we present Incremunica, an incremental
query engine that addresses these gaps. Incremunica uniquely integrates multiple
state-of-the-art incremental operators, allowing it to adapt to different queries and
data for optimal performance. In this article, we provide 1) a requirements analy-
sis comparing Incremunica to related work, 2) an explanation of Incremunica’s ar-
chitecture and features, 3) a performance evaluation showing improvements over
reevaluation, and 4) a demonstration of its benefits through a social media watch
party application.
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1 Introduction

Dynamic data refers to the additions and deletions of datasets, as well as additions,
deletions, and updates of the data points within them. It emerges from a wide variety
of sources across multiple domains. Sensors and IoT devices are prominent contribu-
tors, generating continuous streams of data in smart homes, industrial environments,
and healthcare applications, such as through wearable devices [9,26,40]. Social me-
dia platforms (e.g., Bluesky and Mastodon), e-commerce systems (e.g., Amazon), and
collaborative document platforms (e.g., overleaf), also produce dynamic data in real-
time, such as posts, likes, and user interactions [34]. In the financial sector, systems for
fraud detection, stock exchanges, and banking operations rely heavily on the analysis of
dynamic data [27]. Finally, dashboards for network monitoring, IT systems, and busi-
ness operations require fast updates to maintain a smooth operation [12,30,27,10]. For
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all these domains, it has been shown that semantics play a crucial role in interpreting,
integrating, and deriving meaningful insights from diverse and dynamic data sources,
e.g., to realize optimized patient monitoring [18], building management [37], network
management [48], predictive maintenance [43], and Fintech [53]. By using semantic
technologies, systems can represent the data with rich context, enabling interoperability
between heterogeneous sources, enhancing query capabilities, and improving machine
readability and AI integration.

Maintaining query results over dynamic data, called incremental view maintenance
(IVM), is challenging as recomputing the complete query results every time the data
changes is not always efficient or fast enough. Incremental query engines are crucial to
deal with this challenge. They use the changes in the dynamic data to calculate changes in
the query result. A few incremental SPARQL query engines for the Semantic Web exist,
such as SEPA [40], INSTANS [39], Diamond [35], IncQuery-D [44], and AWETO [38].
However, they each implement only one algorithm to enable incremental SPARQL op-
erators to incrementally update the results, which limits their overall performance poten-
tial. Ensuring high performance is especially critical in environments with high-velocity
data streams, such as those generated by sensors and IoT devices, as well as in appli-
cations where low latency is paramount, like dashboards and financial systems, where
timely updates are essential for effective decision-making and smooth operation. More-
over, most of the current engines lack support for federated querying, which is crucial
when querying the Semantic Web, where data aggregations of heterogeneous sources is
a common requirement. Additionally, the ability to dynamically add and remove sources
during query execution is equally important in such environments, as new sources may
become relevant or interesting to query, especially in decentralized systems like social
media platforms. Additionally, many engines lack full SPARQL Query Language sup-
port, which is essential for the usability of the engine. Furthermore, none offer client-side
execution, a feature that enables privacy-preserving applications and reduces latency in
use cases such as social media, dashboards, and document-sharing platforms.

In this paper, we introduce Incremunica, an incremental query engine built as an
adaptation/extension of Comunica [45], a modular and easily extendable SPARQL query
engine for the Web. The main contributions of this resource are providing 1. an incre-
mental query engine for SPARQL, supporting both additions and deletions, built using
Web technologies. 2. Incremunica is able to run federated queries over decentralized
sources, that offer different Web interfaces to access their data. Furthermore, the ability
to use different Web interfaces allows Incremunica to pose as a benchmarking platform
to evaluate existing, and future Web interfaces from an IVM’s perspective. 3. For fast in-
cremental evaluation, Incremunica supports multiple versions of incremental operators
in one engine, allowing it to select the ideal incremental operator for the use case.

The structure of this article is as follows. The next section first gives a positioning
of the related work, which is then followed by the requirements under which we have
built Incremunica. Next, in Section 3, the architecture and design decisions are laid out.
Section 4 gives a performance evaluation and comparison compared to reevaluation.
Following this, we give a use case in the realm of a social media platform, explain-
ing how our watch party with decentralized storages is implemented with Incremunica.
Finally, we end the article with a conclusion and roadmap.
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2 Related Work & Requirements

This section first describes the related work on incremental query engines for the Seman-
tic Web. Then, requirements are derived for our incremental engine, Incremunica, based
on these works and our specific goals. We then evaluate the related work to determine
how well they fulfill these requirements, and thus highlight the need for Incremunica.

2.1 Related Work

First, incremental query engines are used to improve the performance of sliding windows
in RDF Stream Processing [49]/Streaming Linked Data [14]. A sliding window is a
technique used to process and analyze streaming data by continuously maintaining a
fixed-size or time-bounded subset of the data. This window moves incrementally as
new data arrives, ensuring that only the most recent elements within the defined bounds
are considered for processing. In this context, incremental operators can be optimized
beforehand because the boundaries of the sliding window determine when an element
(or query result) will go out of scope [33,13]. For this reason, these incremental query
engines are not considered in our requirement analysis.

Incremental query engines are also valuable in complex event detection, where a
stream processing system evaluates and monitors a system’s current conditions or state
based on streaming data. Incremental query engines can efficiently query over these
changing states instead of reevaluating the query each time the state changes [27]. An ex-
ample of such a complex event detection engine for the Semantic Web is INSTANS [39].
It is a Rete-based incremental query engine, that claims triple addition and deletion sup-
port for network, triple stores, files or other processes. It also uniquely has a pipeline to
update its internal RDF store based on the query results.

A big adopter of incremental query engines in the Semantic Web is Link-Traversal-
Based Query Processing (LTBQP) [24,41,25], more specifically, where the query engine
discovers additional sources during query execution. The data from these sources are
then incrementally added to the query engine to increase the recall of the query results.
However, LTBQP often only considers additions of sources and data [45,23,32]. There-
fore, we will not consider them when evaluating the requirements. Only Diamond [35]
uses the Rete algorithm [20] to incrementally evaluate the query. Diamond only sup-
ports additions of triples and sources, but is able to use deletions internally to remove
the monotonicity of the OPTIONAL and MINUS operator in SPARQL. The idea of re-
moving monotonicity is further explained in Section 3.1. Diamond has support for a
limited subset of the SPARQL Query Language: Basic Graph Patterns (BGP), MINUS,
OPTIONAL, UNION, and FILTER. Finally, it only supports fetching RDF files hosted
over an HTTP Web interface.

Lastly, in the field of database systems, incremental query engines are found to be
crucial for building incremental view maintenance (IVM) systems that cache frequently
asked queries, especially when aggregating the results from different decentralized data
sources [16,21]. The concept of IVM has also been adapted to the Semantic Web, for ex-
ample, SEPA [40] is an engine built to improve the performance of publish/subscribe ar-
chitectures of Internet of Things (IoT) networks. Clients can subscribe to queries that are
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evaluated by the SEPA engine on data streams that are pushed to the engine by IoT sen-
sors. The SEPA engine improved upon the work of Smart-M3 [36] that used reevaluation
to update the query result by using the counting algorithm from Gupta et al. [21]. Next,
in the same field of publish/subscribe architectures, the engine from Abdullah et al. [9]
increased the performance of incremental query evaluation by using the Rete algorithm.
The last fully incremental query engine that supports both additions and deletions is
IncQuery-D [44]. This engine was built to find inconsistencies/resolve constraints in
complex models to aid in model-driven software engineering. IncQuery-D uses the fact
that Rete-networks can be distributed over multiple computational nodes to parallelize
the incremental evaluation. Finally, AWETO [38] is again a Rete-based incremental
query engine that only supports incremental evaluation of bulk insertions to their lo-
cal storage. As AWETO doesn’t support deletions, it will also be excluded from the
requirement analysis.

2.2 Requirements

Based on the related work and our goals for Incremunica, we have defined a set of re-
quirements. We will outline and explain these requirements in detail, and then summa-
rize how the related work, and Incremunica meets or falls short of these requirements.

The most basic requirement for an incremental query engine is to have support for
both additions and deletions of data (𝑅1). Most engines in the related work can perform
IVM over either a locally maintained RDF store or access the data through a single in-
terface. These interfaces are either local, like a file or another process, or are available
on the Web through a Web interface like a SPARQL endpoint or a file interface over
HTTP. A query engine for the Semantic Web should be able to query over multiple het-
erogeneous interfaces (𝑅2), requiring the need to support federated query techniques.
Incremental query engines that support multiple Web interfaces can allow for more effi-
cient view maintenance. Furthermore, they should also be able to alter the set of sources
(add and remove) during query execution (𝑅3), to dynamically limit the data over which
it queries.

Many of the current incremental query engines realize IVM by using the counting
algorithm, where the query is materialized based on an addition or deletion and then
evaluated with a non-incremental engine. Although this approach is easy to implement,
and more performant than re-evaluation in most cases [29,40], it is not the most perfor-
mant technique. Two alternative techniques for achieving IVM with better performance
are Rete-based methods [20] and higher-order delta queries, also known as higher-order
IVM [28,10]. Both approaches have advantages and disadvantages in certain scenarios,
supporting both enables the selection of the most efficient approach for optimal perfor-
mance (𝑅4). Further explanations of these techniques are found in Section 3.1.

Currently, there are no incremental query engines available for client-side evalua-
tion (𝑅5). Using Web technologies allows an engine to be used client and server side
(with for example Node.js). Finally, it is important to support the complete SPARQL
query language for SELECT queries (𝑅6), including but not limited to property paths,
aggregations, and ordering. This is more thoroughly explained in Section 3.1. Below, a
summary of the requirements is given for readability.
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𝑅1 Supports additions and deletions
𝑅2 Allows to support federated querying
𝑅3 Supports adding and removing sources
𝑅4 Fast incremental operators
𝑅5 Uses Web technologies
𝑅6 Supports all SPARQL SELECT operators

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6

Diamond ✓ ✓(1) ✓(2)
SEPA ✓ ✓

Abdullah et al. ✓ ✓(2)
INSTANS ✓ ✓(1) ✓(2) ✓(3)

IncQuery-D ✓ ✓(2) (4)
Incremunica ✓ ✓ ✓ ✓ ✓ ✓(3)

Table 1. Requirements of an incremental query engine. 1.) Only supports triple interfaces. 2.)
Only supports Rete-based incremental operators. 3.) No support for repeating property paths. 4.)
Could not find mention on completeness of SPARQL operator support.

Table 1 shows how the related work meets the requirements we described above. This
analysis highlights the limitations of existing incremental query engines in meeting the
full range of requirements for Semantic Web applications. While engines such as Dia-
mond, and INSTANS provide partial support, they fall short in areas like dynamically
adding and removing sources, the use of Web technologies, support for higher-order
delta queries, and full SPARQL SELECT support.

3 Incremunica

Our resource contribution is called Incremunica. The source code for Incremunica is
available from Github at https://github.com/comunica/incremunica under an
MIT license (canonical citation: https://doi.org/10.5281/zenodo.15085224). The query
engine is an adaptation/extension of Comunica [45], a query engine written in Type-
Script. Incremunica is organized as a monorepo and leverages dependency injection,
enabling easy extensibility and modularity. This structure allows for comprehensive test-
ing, both with unit testing on individual packages and end-to-end testing, resulting in
100% test coverage. To ensure high code quality and maintainability, Incremunica ad-
heres to standard practices, including linters for code analysis and semantic versioning
for version management.

https://github.com/comunica/incremunica
https://doi.org/10.5281/zenodo.15085224
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Fig. 1. High-level overview of the Incremunica architecture.

Figure 1 presents a high-level overview of Incremunica’s architecture. When a query
and its associated sources are passed to Incremunica (a), the query is parsed by the de-
fault Comunica components into a SPARQL algebra. Next, the sources and the SPARQL
algebra are sent to the Query Source Identify component (b). This component identifies
the type of the source, such as an RDF store or a Web interface like an RDF file hosted
over HTTP. In case of an RDF store, the Incremental Operators setup by the query al-
gebra (g) can immediately get a change stream of mappings from the RDF store in the
Query Source Identify component. Internally, the Query Source Identify matches the
triple patterns of the query to the store. Note that the RDF store needs to support sub-
scribing to changes of a triple pattern. This means if a triple is added that matches a
triple pattern, the mappings need to be sent in the change stream of that triple pattern.
Finally, The pipeline of Incremental Operators will return a stream of result mappings to
the SPARQL query (i). Where each result mapping has a boolean context entry, "isAd-
dition", that specifies if the mapping is added or deleted from the result set. If instead of
an RDF store, a URI is passed as the source to the Query Source Identify component (b),
then the Query Source Identify component will identify the Web interface of that URI.
Based on this, the Query Source Identify component will get the changes, i.e., deltas, of
the source from the Determine Changes component (c). If the source is an RDF file, the
Determine Changes component will fetch the RDF triples (d) and index them into an
RDF store. It will then be responsible for keeping track of future changes to that RDF file
and updating the RDF store. Finally, this store is shared with the Query Source Identify
component (c) where triple patterns are matched to the store. Some Web interfaces can
handle triple patterns, basic graph patterns (BGP), or full queries. In this case, a subset
or the entire query can be offloaded to the source if that part of the query is evaluated
over only one source (d). The Determine Changes component will then return the deltas
to that part of the query (c), which is then passed along to the Incremental Operators
(h) or in case the source executes the entire query, it is passed to the user (i). If the
query is evaluated over multiple sources with the capability to handle triple patterns or
more, Incremunica fetches the individual triple patterns of the query from each source,
and processes the rest locally (h) with the incremental operators. This is to guarantee
complete answers to the query over multiple sources. Some Web interfaces, for example
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hosting RDF files over HTTP, do not allow for having a stream of deltas from that file.
In these cases, Incremunica also sets up a Source Watch component, which will notify
the Determine Changes component on changes (e). Depending on the situation and the
configuration of Incremunica, it will choose a suitable Source Watch technique, possibly
by using a Web interface (f).

In the following sections, we will go more in depth on 1. the Incremental Oper-
ators that calculate the changes in the query results from the changes in the data, 2.
the Determine Changes component, which determines which Web interfaces it can use
to calculate the changes efficiently, and finally, 3. the ways in which the Source Watch
component can get notifications.
3.1 Incremental Operators

The simplest approach to achieving IVM is through the counting algorithm proposed
by Gupta et al. [21]. This method materializes the query on updates and uses a non-
incremental engine to evaluate the materialized query. However, Incremunica employs
dedicated incremental operators that efficiently handle both additions and deletions.
Deletions are propagated through the engine in the same way as additions, updating
the operator’s internal state. This ensures the state reflects a consistent query result as
if the deleted data had never been added, guaranteeing complete and correct answers.
The incremental operators used in Incremunica can be categorized based on how they
handle state:

– Linear operators: These operators do not retain internal state and operate indepen-
dently of previous data. Their behavior is identical to non-incremental counterparts.
For instance, the UNION operator belongs to this category.

– Stateful operators: These operators maintain internal state for more complex op-
erations like the JOIN operator. Two algorithms are implemented in Incremunica:
Rete-based operators [20] and Higher-order IVM or higher-order delta query oper-
ators [28].
The first type of stateful operators are Rete-based operators. These operators take

multiple inputs and perform a certain operation on them, for example, joining the two in-
puts based on the common variables. This approach is similar to symmetric joins [32,31],
although this algorithm can only handle additions. A notable feature of the Rete algo-
rithm is the ability to share intermediate results across multiple queries with overlapping
operations. However, Incremunica does not implement this feature. The second stateful
operators are the higher-order delta query operators. These operators are similar to the
bind joins in a non-incremental engine [22], and are particularly effective when one in-
put produces significantly fewer intermediate results than the other. Higher-order delta
query operators achieve this by materializing the remaining query based on one input,
similar to the counting algorithm. By removing one triple pattern during materializa-
tion, the resulting query becomes simpler. Unlike the counting algorithm, the resulting
materialized query is then evaluated incrementally. Both types of stateful operators can
be implemented using different indexing strategies. For example, indexing can enhance
performance when matching overlapping variables, as seen in symmetric hash joins, or
it can optimize deletions from the state. Although, the exact details are out of scope for
this article.
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Incremunica can also be of use in a Link Traversal setting, as it supports the addi-
tion and deletion of sources during execution time. The addition of sources can provide a
more hands-on approach for developers to guided LTBQP [51], which allows the devel-
oper to use the result of a SPARQL query as input to the sources for another SPARQL
query. For example, they could first query a dataset of academic publications to find
the ones about IVM to then use the IRI’s of these publications to get their abstracts. In
an incremental setting, if new publications are added or removed from the dataset of
academia publications, the results of the query for the abstract will reflect these changes
dynamically. Also, the addition and deletion of sources during query execution includes
support for changes in privacy. This means that during the maintenance of a query, a pre-
viously available source can become unavailable. In this case, all data from this resource
will be removed from the internal state of Incremunica. Furthermore, as Incremunica is
a full incremental query engine (supports deletions), it can also be used to solve the lack
of monotonicity of some SPARQL operators, where a result can only be produced if all
data has been processed. The lack of monotonicity can be an issue in Link Traversal, as it
requires the engine to have the complete dataset before emitting results. Cheng et al. [15]
evaluated the performance of a monotonic version of the OPTIONAL or left join opera-
tor, called the OPT+ operator. The OPT+ operator immediately emits a result where the
results from the optional basic graph pattern (BGP) have not been merged. A downside
to this technique is that the result set can be larger because of these premature results. In
an incremental setting, it is possible to immediately emit the result like the OPT+ opera-
tor, but then remove this result if a mapping is found for the optional BGP. As previously
mentioned, this technique has been shown by Diamond [35]. The OPTIONAL operator
isn’t the only operator that isn’t monotonic, Incremunica also applies this technique to
the FILTER NOT EXIST, DIFF, MINUS, GROUP BY, and ORDER BY operators.

A few SPARQL operators are currently not supported in Incremunica. While Incre-
munica does support property paths, it does not currently support repeating property
paths. These are paths that use the ‘*‘ (zero or more) and ‘+‘ (one or more) operators to
indicate repetition in a sequence of predicates. Lastly, Incremunica currently supports
only SPARQL SELECT queries.

3.2 Determining Changes

The input of the incremental operators discussed in the previous section is the set of
changes to the underlying data. This section discusses how Incremunica determines the
changes or deltas in the data. This includes changes to both a local RDF store or online
sources using Web interfaces, and outlines future directions for this research.

As mentioned in the explanation of the Incremunica architecture, Incremunica re-
quires that local RDF stores give a delta stream of matches to a triple pattern. This can
be achieved with any kind of traditional store (in-memory or on-disk). Incremunica has
an in-memory implementation of this called the Streaming Store. As said, the Streaming
Store will keep the stream open for not only the current matching triples, but also the
triples that match the triple pattern in the future. This is accomplished by indexing both
the triples and the triple patterns, so not only triple patterns can be matched to triples,
but also added or deleted triples can be matched to the triple patterns.
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In terms of Web based sources, only data dumps or RDF files hosted over HTTP
are currently supported. These sources are dereferenced, parsed, and indexed into a
Streaming Store. When a resource is updated, Incremunica takes a naive approach: it
dereferences the new version, parses, and indexes it, and then calculates the changes by
comparing the new and old Streaming Store. Blank nodes are usually equally skolem-
ized, if not, the query result from the old blank node will be deleted and the query result
from the new blank node will be added, ensuring complete and correct results. A pos-
sible future improvement would be to apply graph isomorphism algorithms for a more
precise comparison. However, this may prove computationally expensive, making the
current approach of deleting the results followed by adding it again more efficient in
practice.

Future work will focus on supporting other existing interfaces to more efficiently cal-
culate the changes in the data. The first candidate is Versioned Triple Pattern Fragments
(VTPF) [46], which is an extension to the Triple Pattern Fragments (TPF) [52] inter-
face. It allows to query the added and deleted triples that match a triple pattern between
different versions of a resource. Another possible interface is the memento [42] proto-
col, which stores each version of the resource. This allows the query engine to purge
the previous version of the document locally, slightly improving memory consumption.
The third candidate is RDF Delta [6], which uses RDF PATCH logs that describe the
changes to the RDF dataset. This allows to reconstruct the different versions. Finally,
Linked Data Event Streams (LDES) [4] uses members to more efficiently store differ-
ent versions of a resource. Each member is a collection of RDF triples with a similar
shape. An addition, deletion, or update is stored immutably as an observation. As such,
fetching all observations allows for the reconstruction of the dataset and its different ver-
sions. Other than actual interfaces, there also exist vocabularies that describe changes
to an RDF dataset without actual interfaces, such as the ChangeSet vocabulary [3] and
Activity Streams [1]. The next section will describe how these vocabularies could be
used as an interface.

3.3 Source Watch

The previous sections explained how to get the changes in a resource and how to use
them to maintain a materialized view incrementally. The remaining aspect to address
is how Incremunica can be notified of changes to a resource. Notifications are typically
handled through three main approaches: polling, pushing, and connection interfaces.

Polling a resource is the act of doing continuous HTTP requests to get the current
state of a resource. Incremunica does simple HTTP HEAD requests to the server to find
out if the HTTP entity tag (ETag) of the resource has changed. Doing a HTTP HEAD
request decreases the bandwidth of polling as the complete resource does not have to be
sent along, like with HTTP GET requests. The frequency of polling can be determined
in advance by the user or by the cache control system of the resource. Polling can be
useful for cache-controlled resources or if the latency of updates is not a major issue.
It can also be useful for deferred maintenance [17], where the user defines when the
materialized view needs to be updated, either time based or on request.
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In a pushing approach, the data source notifies the query engine if changes to the
data have occurred. This uses technologies like webhooks, HTTP POST, Server-Sent
Events, etc. This leads to a lower latency than the polling approach. It has been shown
by Van De Vyvere et al. [50] that in cases where 10 seconds or more is an acceptable
latency, polling is a more scalable option compared to Server-Sent Events, due to the
overhead of maintaining the connection. An example of an actual interface of this is
Linked Data Notifications [5], where the data source sends the notifications to an inbox
with HTTP POST requests.

Finally, a connection approach uses websockets to get notifications about the state of
a resource. It allows for a duplex connection between the data source and the query en-
gine, enabling the query engine to make alterations to the notification request, e.g., when
the query engine is interested in an additional resource managed by the same notification
service. An actual example of such an interface is the Solid Notification Protocol [7].
The current version of this protocol (0.2.0) uses websockets (or webhooks) and the Ac-
tivity Streams [1] vocabulary to specify if a resource on a solid pod has changed. The
full Activity Streams vocabulary could also be used in itself with a websocket interface
to specify the exact changes (added and deleted triples) to a resource.

At the moment of writing, Incremunica supports deferred maintenance, polling, and
the Solid Notifications Protocol, with plans of implementing all other Source Watches
discussed in this section.

4 Performance Evaluation

This section discusses the performance of Incremunica with respect to handling updates,
and also compares it against query reevaluation using Comunica. The benchmark can
be accessed via the canonical citation: https://doi.org/10.5281/zenodo.14512790.

4.1 Evaluation set-up

For the evaluation, we used an adaptation of the LDBC Social Network Benchmark [19]
called SolidBench [47]. SolidBench fragments the data from the LDBC Social Network
Benchmark into different n-quads files, to mimic a network of decentralized data spaces.
The LDBC Social Network Benchmark offers two workloads, short and complex. We
selected the short workloads, as they provide a representative measure of Incremunica’s
performance while also being theoretically favorable to reevaluation due to their simplic-
ity. These workloads describe updates to the data, consisting of insertions and deletions.
For short queries 1 and 3, a friendship is added or removed according to insertion and
deletion 8 in the specification [11]. For queries 2, and 4 to 7, a comment is added or
removed as described by insertion and deletion 7. As Incremunica does not yet support
recursive property paths (Section 3.1), queries involving the zero-or-more property paths
(queries 2 and 6) were rewritten using an OPTIONAL clause to check for the existence
of a single property.

Two experiments were conducted: offline and online evaluations. Both experiments
follow the same methodology, differing only in the type of data sources. In the offline
evaluation, data is stored and indexed in a single RDF store, with updates applied directly

https://doi.org/10.5281/zenodo.14512790
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to that store as described in the benchmark specification. The online evaluation uses
the fragmented files as defined by SolidBench, accessed via HTTP GET requests. To
benchmark Incremunica’s update time, changes are applied to the files, and deferred
evaluation (Section 3.3) triggers Incremunica to update the query results. Afterwards,
Incremunica uses the naive way of determining changes described in Section 3.2. The
online analysis represents the worst case for Incremunica, as it has to derive the changes
between the files. Finally, to allow for a fair comparison and optimize the performance
of reevaluation with Comunica, only the cache for the source that the benchmark had
changed is invalidated.

The experiments were run on an Ubuntu 20.04.6 LTS x86_64 machine with Node.js
v20.19.0 limited to an 80GB heap size, an Intel Xeon E5-2650 v2 @ 2.6GHz processor,
and 129 GB of memory. Each scenario is run 30 times with a random person, each with
a different number of friends, comments, posts, ect., returning a different number of
results.

Fig. 2. Execution times for offline analysis, showing Incremunica outperforming reevaluation as
query result size increases.
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Fig. 3. Execution times for online analysis, highlighting Incremunica’s advantage over reevalua-
tion despite HTTP variability.

Q1-A Q1-D Q2-A Q2-D Q4-A Q4-D Q5-A Q5-D Q6-A Q6-D Q7-D
min. 13.52 6.99 5.64 5.60 1.47 2.46 2.17 3.61 17.37 4.63 6.46
avg. 29.06 13.02 14.79 11.34 6.12 17.51 3.59 19.01 53.46 9.82 33.01

std. dev. 12.31 5.85 4.34 8.12 5.48 18.61 1.05 24.55 28.25 6.47 30.89
max. 62.24 34.38 27.46 44.45 27.95 66.94 6.68 92.30 114.49 39.76 137.75

Table 2. Minimum, average, standard deviation, and maximum evaluation times in milliseconds
for Incremunica’s offline analysis by query and update type.
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4.2 Results & Discussion

The performance results are shown in Figure 2 and Figure 3. Each graph is annotated
with the query number (workload number) and an "A" or "D" to indicate addition or dele-
tion scenarios, respectively. Table 2 presents the minimum, average, standard deviation,
and maximum evaluation times for the offline analysis, which provides a non-biased
metric unaffected by HTTP latency or parsing speed. Scenarios Q3-A, Q3-D, and Q7-A
never produced any results and are therefore excluded from the results. The offline anal-
ysis is presented as a function of the number of results the query produced, which aligns
with the database size on which the query was evaluated. For the online analysis, the
graphs are shown as a function of the number of sources, as HTTP requests are the main
bottleneck in this context. This evaluation demonstrates that incremental query evalu-
ation can significantly enhance performance when maintaining a materialized view in
response to changing data.

Figure 2 shows the performance of the offline analysis. The results reveal that the
execution time for reevaluation has a direct, increasing relationship with the number of
results, while incremental view maintenance (IVM) often exhibits a constant relation-
ship between execution time and the number of results. This agrees with the consensus
of IVM that it is better in cases where the ratio between the size of the changes and the
database is small. In all cases, IVM outperforms reevaluation, even for queries produc-
ing a small number of results, often by an order of magnitude.

In the online analysis, shown in Figure 3, a similar trend is observed, with Incre-
munica consistently outperforming reevaluation, again often by an order of magnitude.
However, the online analysis is more variable than the offline one due to changes in
the size of the fragmented files. This variability is unfavorable for the naive method of
detecting changes discussed in Section 3.2, as it must identify differences between two
larger sets of triples.

Finally, this evaluation also serves as a partial proof of the completeness and cor-
rectness of the operators used in Incremunica, as the results from the benchmark are
constantly compared against the results from Comunica.

5 Use Case: A watch party with data spaces

We showcase the capabilities of Incremunica through the implementation of a specific
use case from the field of data spaces like Solid [8], bluesky [2], and others. These
initiatives aim to decentralize the Web by giving each person their own data vault in
which their personal data is stored to which they can give permissioned access. This
evolution creates many decentralized sources with heterogeneous Web interfaces. The
data space of a person holds that person’s online activity, creating large amounts of
dynamic data. Redoing a query every time their data changes or the sources of the query
are altered can become computationally expensive, slowing down applications, making
them unusable.

A watch party is a combination of a video streaming service and chat. The idea is
that a group of people can watch a synchronized video together on different clients,
where the video stream on all clients is synced, and they can simultaneously chat about
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their viewing experience. This kind of application requires the different clients to both
sync up all messages and all video events like play, pause, and scrubbing. The user
interface (UI) of our version of a watch party using Solid technologies can be consulted
at: https://github.com/SolidLabResearch/solid-watch-party.

The creator of a watch party (the host) will make a resource available for all video
controls and other watch party information, and store this information in their data vault.
After the host invites other participants by sharing the URL, he can accept their invites
in the application and gives them append permission on this resource. The participants
will then create a resource as a message box, which holds all created messages by them,
maintained in their own data vault. Each participant is required to give permission to all
other participants (including the host) to read this message box resource. Figure 4 gives
an overview of this architecture.

Fig. 4. An overview of the architecture for the watch party application.

Getting a constant stream of new messages for the watch party therefore requires
us to perform an incremental query to the message boxes of all participants to keep up
to date with these message boxes in case changes occur. Finally, it’s possible that new
users are added to the watch party whose messages and message box also need to be
watched for changes. To achieve this, we can first query the message boxes by executing
the following query on the room resource:
PREFIX schema : < h t t p : / / schema . o rg />
SELECT ? messageBoxes
WHERE {

<[Room_IRI]> schema : s u b j e c t O f ? messageBoxes .
}

When performing this query with Incremunica, we get a constant stream of all mes-
sage boxes now and in the future. Incremunica will set up a websocket connection with
the host pod to ask for notifications if the room resource has changed. The result of this
query can then be used as a list of sources for the following query:

https://github.com/SolidLabResearch/solid-watch-party
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PREFIX schema : < h t t p : / / schema . o rg />
SELECT ? message ? d a t e S e n t ? t e x t ? s e n d e r
WHERE {

? message a schema : Message .
? message schema : d a t e S e n t ? d a t e S e n t .
? message schema : t e x t ? t e x t .
? message schema : s e n d e r ? s e n d e r .

}
This will query across the message box resources of the different participants pods

and return a stream of added and deleted messages and their additional data. As men-
tioned in Section 3.3 a connection type interface allows for duplex communication. Ince-
munica will therefore use the existing websocket connection with the host pod to receive
notifications for both the room resource and the message box resource of the host. For all
incremental queries in the watch party application, the default version of Incremunica
was used.

6 Conclusion and Roadmap
This work introduced Incremunica, an incremental query engine developed using Web
technologies, aimed at addressing the need for efficient federated incremental querying
over heterogeneous Web interfaces for both client-side and server-side applications. By
uniquely integrating higher-order delta query-based and Rete-based incremental opera-
tors, Incremunica adapts to different queries and data for optimal performance. It also
supports dynamic source addition and removal during query execution and supports
most SPARQL SELECT operators, effectively filling gaps left by prior engines. Addi-
tionally, with its modular architecture and extensibility, Incremunica provides a platform
to benchmark existing and future Web interfaces in the scope of IVM. Our performance
evaluation demonstrated that Incremunica is often an order of magnitude faster than
re-evaluation. Finally, to showcase its practical benefits, we implemented a watch party
use case where Incremunica efficiently maintains query results across decentralized data
spaces, handling dynamic updates and new data sources seamlessly. Incremunica lays
the groundwork for advancing incremental query processing for dynamic, real-time Se-
mantic Web applications.

The future of this work, next to the future directions already mentioned in Section 3,
is to evaluate the performance of different Web interfaces in the scope of IVM. Fur-
thermore, currently, Incremunica uses a predefined incremental operator for its incre-
mental query execution. We want to be able to choose the most performant operator
for that situation automatically. Finally, Incremunica provides a test bed for research on
incremental LTBQP, where the query results for a LTBQP query are maintained under
changes in the data. Incremunica like Comunica, will receive continued maintenance
(https://github.com/comunica/comunica/wiki/Sustainability-Plan).
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